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Abstract 
The energy equation for turbulent flow of fiber suspensions was derived in terms of 
second order correlation tensors. Fiber motion of turbulent energy including the 
correlation between pressure fluctuations and velocity fluctuations was discussed at 
two points of flow field, at which the correlation tensors were the functions of space 
coordinates, distance between two points, and time. 
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1. Introduction 
 
Turbulent energy of fiber suspensions can be 
found in many areas of industry, such as 
production of composite materials, 
environmental engineering, chemical 
engineering, textile industry, paper making, and 
so on. In all the composite materials and paper, 
the overall orientation of the reinforcing part 
(fibers) plays a crucial role in deciding on the 
mechanical properties of the final product. 
Thus, the fiber suspensions property has a 
significant effect on the quality of products. In 
papermaking processes, mechanical properties 
of manufactured paper are deeply influenced by 
anisotropic fiber orientation induced by the 
carrier flow [1]. The quality of the fabric, in 
terms of fiber density uniformity, is governed 
by the fibre-flow interaction which determines 
the fiber movement in the pipeline and in the 
laydown area. Fibers in the flow play a role in 
suppressing turbulence and reducing  drag; such 

effects become obvious with the increase of 
fiber mass concentration. Stability and drag 
reduction are revealed in transient channel flow 
of fiber suspension [2,3]. At great 
concentrations, there is an interaction between 
the fibers through collisions and through the 
effects on the flow of the fluid in the 
neighborhood of the particles. Bracco et al. [4] 
described a scenario in which turbulence 
mediated a process by aggregating particles into 
anti-cyclonic regions. The simulation result of 
this study suggested that the anti-cyclonic 
vortices were formed as long-lived coherent 
structures and the process became more 
powerful, because such vortices effectively 
trapped the particles.  
Turbulence is maintained by turbulent energy 
production, where dissipation and the buoyancy 
flux act as sinks for the turbulent energy. The 
kinetic energy dissipation was determined from 
batchelor curve fitting [5]. Energetic of the 
current and balanced the turbulent energy 
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equation was examined to justify using 
dissipation by turbulence per unit of mass as an 
estimation of the local production [6]. 
Numerical models for turbulent fluid-particle 
flows were reviewed by Crowe et al. [7]. The 
review was structured according to the 
turbulence models used for the continuous 
phase: turbulence energy dissipation models, 
large-eddy simulations, direct numerical 
simulations, and discrete vortex models. Oakey 
[8] examined the dissipation rate of turbulent 
energy from simultaneous temperature and 
velocity shear microstructure measurements. 
Spectra of turbulence were examined for both 
temperature gradient and velocity shear. Saito 
and Lemos [9] derived a macroscopic two-
energy equation model for turbulent flow in a 
highly porous medium and applied it to a 
porous channel bounded by parallel plates. 
Macroscopic continuity, momentum, and 
energy equations were presented and local non-
thermal equilibrium was considered by means 
of independent equations for the solid matrix 
and the working fluid.  
The motion between a fluid particle and 
suspended fibers based on the basic fluid 
dynamics in order to behavior of turbulence 
with the correlations between pressure 
fluctuations and velocity fluctuations. The fiber 
orientation is an important physical quantity, 
which does not just refer to the rheology of 
fiber suspensions. The orientation distribution 
of fibers has been examined in a pipe flow 
[10,11]. Motion of particles was explored in the 
turbulent pipe flow of fiber suspensions [12]. 
Equation for turbulent flow of fiber suspensions 
and its solution and application were discussed 
to the pipe flow by Jian-Zhong et al. [13]. 
Observations of fiber suspensions were also 
studied in turbulent motion by Anderson [14]. 
An expression was derived for turbulent motion 
with the correlation between pressure 
fluctuations and velocity fluctuations at two 
points of the flow field [15], at which the 
correlation tensors were the functions of space 
coordinates, distance between two points, and 
time. An independent variable was introduced 
in order to differentiate between the effects of 
distance and location [16]. In the limiting case 
of zero viscosity and infinite electrical 

conductivity, there exist two distinct modes of 
turbulence, which have been distinguished as 
the velocity mode and the magnetic mode, 
respectively. Equation of fiber motion for 
turbulent flow was derived by Ahmed and 
Sarker in terms of second order correlation 
tensors, in which the correlation tensors were 
the functions of space coordinates, distance 
between two points, and the time [17]. The 
turbulent fiber motion has been also derived in 
a rotating system [18-20] and in the presence of 
dust particles [21-23]. Considering all these 
works, the main aim of the present study was to 
derive energy equation for turbulent flow of 
fiber suspensions in terms of second order 
correlation tensor, in which the correlation 
tensors were the functions of space coordinates, 
distance between two points, and the time. 
 
2. Mathematical model of the problem 
 
Assume that the fluid is incompressible. The 
energy equations of motion and continuity for 
turbulent flow of a viscous incompressible fluid 
are given by [6]: 
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Fiber suspensions into the flow equation of 
motion is given by [13]: 
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where iu  are the fluid velocity components, 
p is the unknown pressure field,   is the 

kinematical viscosity of the suspending fluid,   
is the density of the fluid particle, and ijl  is the 
three-dimensional permutation symbol, where 
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  is the dissipation by turbulence per unit of 
mass, and j  is the rotation vector [13];  

      cAcc
nL

f 
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/1loglog/1log3

3
 is the 

apparent viscosity of fiber semi-dilute 
suspensions, in which n is the number of fibers 
per unit volume, L and d are the length and 
diameter of the fibers, respectively,   is the 
dynamical viscosity of the suspending fluid,  

  24/ nLdc  is the volume fraction of the 
fibers, and A(c) is a constant.  
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  is the tensor of strain 

rate, ijI  is the turbulent intensity of 

suspensions, lma  and ijlma are the second- and 
fourth-orientation tensors of the fiber, 
respectively, and t is the time.  
Assume A  and B  as two points in the flow 
field and let a  and b be two given directions at 
points A  and B , respectively, where aU  and 

bU  are the velocity components along these 

directions. Assume that the mean velocity iU  is 
constant throughout the considered region and 
independent from time; thus:  
 
 
  ,Aiii uUU   

Bjjj uUU  . 
 
where the value of each term can be obtained 
by the equations of motion for jU  at point B  

and for iU  at point A .  
The energy equation for iu  at point A  is 
obtained from Eq. (3):  
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that Eq. (4) can be written as: 
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Multiplying Eq. (5) by  

Bju  results in: 
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where  

Bju  can be treated as a constant in a 

differential process at point A .  
Similarly, the energy equation for ju  at point B  
is obtained as: 
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Multiplying Eq. (8) by  Aiu  results in: 
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where  Aiu  can be treated as a constant in a 
differential process at point B . 
Adding Eqs. (6) and (9) gives the result: 
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To expose the relation of turbulent energy at 
point B  to the one at point A , no difference 

will be obtained if one point is taken as the 
origin of A  or B  of the coordinate system. 
Consider point A  as the origin. In order to 
differentiate between the effects of distance and 
location, the new independent variables are 
introduced: 
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Using the above relations in Eq. (10) and taking 
ensemble average on both sides, Eq. (10) 
becomes: 
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Eq. (11) represents the mean motion for 
turbulent energy of fiber suspensions.  
It is noted that the coefficient of kU  is 
vanished. Eq. (11) describes the turbulent 
energy motion of fiber suspensions, in which 
the motions with respect to a coordinate system 
move with the mean velocity kU . 
Eq. (11) contains the double velocity 
correlation    

BjAi uu , double correlations such 

as  
BjA up , and triple correlations such as 

     
BjAkAi uuu , where all the terms are apart 

from one another. The correlations  
BjA up  
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and  AiB up form the first order tensors, 
because pressure is a scalar quantity and the 
triple correlations      

BjAkAi uuu  and 

     
BjBkAi uuu  form the third order tensors. 

The double and triple correlations at the two 
points A  and B  in the flow field are shown in 
Figs. 1 and 2, respectively, where r is the 
distance between two points A and B .  
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Fig. 1(a). Double correlation between pressure at A  
and velocity components at B . 
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Fig. 1(b). Double velocity correlation between the 
velocities au at  A and bu  at B . 
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Fig. 2. Triple velocity correlation among the 
velocities at points A  and B . 
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where the index p indicates the pressure and is 
not a dummy index like i  or j  so that the 
summation convention does not apply to p . 
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,, BlmlmjkAiBAjki aIuH 

      .
,, BjAlmlmikBAjik uaIH   

 
If the above relations of first, second, and third 
order correlations are used in Eq. (11), then: 
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










pi
j

jp
i

kji
k

jik
k

ji KKSSQ
t ,,,,,

1


 

              jijiji
kk

NMQ ,,,

2

22 






  

   



 




 jkijikjikjki
k

f HHDD ,,,, 3
1




    

                                                                 (12) 
 
where all the correlations refer to two points A  
and B .  
Now, for an isotropic turbulence of an 
incompressible flow, the double pressure-
velocity correlations are zero; ie.e:      
 
  ,0

,, 
BAjpk   0

,, 
BApik . 

 
In the case of isotropy, the statistical features 
have no directional preference and the perfect 
disorder persists. Velocity fluctuations are 
independent from the axis of reference; i.e. 
invariant to axis rotation and reflection. From 
the definition of isotropy, 
      0

,, 
BjAiBAji uuQ  for all ji  . In the 

rotating system in the flow field, 1800 about 1x -
axis, because of isotropy, results in:  
  
 
           BABABA uuuuuu 212121 ][   

which can be true only when     021 BA uu . 
The isotropic turbulence in a bounded domain 
is a model, which is unaffected by the 
boundaries enclosing the fluid in the 
turbulence; furthermore, the statistical moments 
are spatially invariant and independent from 
orientation. Isotropic grid turbulence is a 
similar idealization in that the turbulence is 
enclosed by wind tunnel walls and the 
homogeneity of the turbulence in the central 
region is known to be unaffected by the wall 
boundary layers. 
In an isotropic turbulence, it follows the 
condition of invariance under reflection in 
terms of point A ,  

 
           

BiAjAkBjBkAi uuuuuu   

or,    
BAikjBAkji ss

,,,,   

 
In the absence of isotropic turbulence, physical 
properties will be different in different 
directions according to the direction of 
measurement. Anisotropic turbulence tends 
toward local isotropy in that the statistics of 
velocity differences tends toward invariance 
under rotation as the distance between the 
velocities becomes smaller. For non-isotropic 
(anisotropic) turbulence, constant or non-
constant average velocity of pressure field will 
not be zero. Anisotropy is the property of being 
directionally dependent. It can be defined as a 
difference when measured along different axes 
in a material's physical or mechanical properties 
(absorbance, refractive index, conductivity, 
tensile strength, etc.). 
Eq. (12) can be written using 
   

BAikjBAkji ss
,,,,  as :  

 

  ji
kk

ikjjik
k

ji QSSQ
t ,

2

,,, 2



 









  

                                     jiji NM ,,2   

   
















 ijkjik
k

jikijk
k

f HHDD ,,,, 3
1



  (13) 

 
The 

terms  ikjjik
k

SS ,, 




,  jikijk
k

DD ,, 



, 

 ijkjik
k

HH ,, 




 and  jiji NM ,,   form the 

second order tensors, designated by 
jiji DS ,, , , jiH , , and jiL , , respectively. 

Thus we set, 
  

 ikjjik
k

ji SSS ,,, 






,

 jikijk
k

ji DDD ,,, 






,
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 ijkjik
k

ji HHH ,,, 






, 

 jijiji NML ,,,  . 
 
Therefore, Eq. (13) gives the result:  
                          

















jiji
kk

jiji LQSQ
t ,,

2

,, 2


                        

                             





  jiji

f HD ,, 3
1




      (14) 

Eq. (14) represents the energy equation for the 
turbulent flow of fiber suspensions. 
 
3. Results and discussion 
 
The resulting Eq. (14) has been developed in 
terms of second order correlation tensors when 
fiber was suspended into the turbulent flow. 
The equation was derived by averaging 
procedure, which includes the effect of fibers 
and the correlations between the pressure 
fluctuations and velocity fluctuations at two 
points of the flow field. Fiber suspensions in a 
turbulent fluid undergo mean motion due to the 
mean fluid velocity and random motion due to 
the fluctuating component of fluid velocity. 
Velocity of fiber fluctuates around the mean 
velocity of flow. Fluctuation velocity of 
turbulence at two points A  and B  of the flow 
field leads to the weakening of the 
concentration of the fiber orientation 
distribution on small angle. This concentration 
leads to be weaker and orientation distribution 
of the fiber becomes more uniform as Reynolds 
numbers increase and flow fluctuation velocity 
becomes stringer. The fiber velocity has the 
same fluctuation property as fluid velocity due 
to its strong following ability. The fluctuation 
velocity of fiber on flow direction is more 
energetic than that on lateral direction. As 
Reynolds number increases, the intensity of 
fluctuation velocity is enhanced, flow velocity 
gradient becomes more irregular, and 
orientation distribution of fiber becomes wider. 
For non-suspending fluid in the flow, the 
apparent viscosity of the fluid vanishes; that is 

0f so that Eq. (14) takes the following 
form:  
 


















jiji
kk

jiji LQSQ
t ,,

2

,, 2


    (15) 

The above equation is the energy equation for 
turbulent flow in terms of second order 
correlation tensors. 
If there are no effects of dissipation   by the 
turbulence per unit mass, 0, jiL , so that Eq. 
(15) takes the following form: 
 

ji
kk

jiji QSQ
t ,

2

,, 2








                    (16)                      

Eq. (16) gives the turbulent motion in terms of 
second order correlation tensors, which is the 
same as the one obtained by Hinze.  
 
4. Conclusions 
 
Orientation and distribution of fibers are mainly 
affected by flow. Fiber-turbulence interaction is 
a complex phenomenon that is governed by 
many factors, including nature of flow field, 
turbulent length scales, concentration, and size 
of fibers. In presence fiber into the turbulent 
flow, an energy equation was developed in this 
study in terms of the second order correlation 
tensors, which corresponds to the turbulent 
motion in terms of second order correlation 
tensor as obtained by Hinze [3]. In the 
developed equation, all the tensors 

jijijijiji HDLSQ ,,,,, ,,,,  are the second order 

correlation tensors, where jiQ , and jiS ,  
represent the velocity correlations at two points  
A and B of the flow field and jiD , and jiH ,  
stand for velocity correlations of suspending 
fluid, where jiL , signifies the correlation 
between angular velocity due to rotation and 
velocity of fluid particles at the two points. But, 
in the absence of fiber in the fluid and without 
any effect of dissipation   by the turbulence 
per unit mass to the fluid velocity, the resulting 
Eq. (14) is reduced to Eq. (16), which 
represents the turbulent motion.   
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