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Article info:  Abstract 
In the present work, study of the vibration of a functionally graded (FG) 

cylindrical shell made up of stainless steel, zirconia, and nickel is presented. 

Free vibration analysis is presented for FG cylindrical shells with simply 

supported-simply supported and clamped–clamped boundary condition 

based on temperature independent material properties. The equations of 

motion are derived by Hamilton’s principle. Material properties assume to be 

graded in the thickness direction according to a simple power law distribution 

in terms of the volume fraction of the constituents. Effects of boundary 

conditions and volume fractions (power law exponent) on the natural 

frequencies of the FG cylindrical shell are studied. Frequency characteristics 

of the FG shell are found to be similar to those of isotropic cylindrical shells. 

Furthermore, natural frequencies of these shells are observed to be dependent 

on the constituent volume fractions and boundary conditions. Strain 

displacement relations from Love's and first-order shear deformation theories 

are employed. Galerkin method is used to derive the governing equations for 

clamped boundary conditions. Further, analytical results are validated with 

those reported in the literature and excellent agreement is observed. Finally, 

in order to investigate the effects of the temperature gradient, functionally 

graded materials cylindrical shell with high temperature specified on the 

inner surface and outer surface at ambient temperature,1D heat conduction 

equation along the thickness of the shell is applied and the results are 

reported. 
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Nomenclature 
Aij extensional stiffness Q resultant shear force 

Bij coupling stiffness R radius of the shell 

Dij bending stiffness T kinetic energy 

E modulus of Young’s elasticity U strain energy 

H thickness of shell W work carried on the shell 

K Shear correction factor Greek letters  

L length of shell ε middle surface strain 

M resultant moment  ν Poisson’s ratio 

N resultant force  ρ mass density 

NT thermal load ω natural frequency in rad/s 

n circumferential wave number   
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1. Introduction  
 

In the recent years, functionally gradient 

materials (FGMs) have gained considerable 

attention in the high temperature environment 

applications. Many familiar FGMs are 

compositionally graded from a refractory 

ceramic to a metal so that it can incorporate 

incompatible functions such as the heat, wear 

and oxidation resistance of ceramics and the high 

toughness, high strength, machine-ability and 

bonding capability of metals without severe 

internal thermal stress. The concept of FGMs 

was first introduced in 1984 by a group of 

materials scientists in Japan [1, 2], as a means of 

preparing thermal barrier materials. Since then 

FGMs have attracted much interest as heat-

shielding materials. FGMs are made by 

combining different materials using powder 

metallurgy methods [3]. They possess variations 

in constituent volume fractions that lead to a 

continuous change in the composition, 

microstructure, porosity, etc. and this results in 

gradients in the mechanical and thermal 

properties [4-6].  

An in-depth discussion on various issues related 

to FGMs on modeling aspects to determine the 

magnitude of thermal stresses developed due to 

large thermal loading, the optimal composition 

of the constituents or the composition profile that 

helps to decrease the magnitude of thermal 

stress, formation of cracks and eventually failure 

of the structural member by fracture and many 

other topics can be found in the article by Noda 

[7]. Fuchiyama and Noda [8] developed a 

computer program to analyze the transient heat 

transfer and the transient thermal stresses in 

FGM components by the finite element method. 

Obata and Noda [9] attempted studies to design 

an optimum functionally gradient (FG) hollow 

cylinder and hollow sphere in terms of reducing 

the thermal stresses due to uniform temperature 

rise and given the temperature difference 

between the inside and the outside. Reddy and 

Chin [10] developed a coupled as well as an 

uncoupled thermo-elastic finite element 

formulations to analyze the thermo-mechanical 

behavior of FG cylinders and plates subjected to 

abrupt thermal loading. Jabbari et al. [11] 

derived Navier’s equation for an FGM hollow 

cylinder taking into account the 1D steady-state 

heat conduction. Awaji and Sivakumar [12] 

numerically analyzed the steady-state and 

transient temperature distributions and related 

thermal stress distribution in an FGM cylinder 

composed of mullite-molybdenum system. 

Takezono et al. [13] carried out numerical 

studies on the FG cylindrical shells containing 

hot fluid. Ye et al. [14] discussed a 2D axi-

symmetric thermo-elastic problem of an FG 

transversely isotropic cylindrical shell. Liew et 

al. [15] detailed the derivation of an analytical 

model to carry out studies on FG hollow 

cylinders subjected to an arbitrary steady-state 

and transient temperature field.  

Studies on the vibration of cylindrical shells are 

extensive. Many of these studies have been done 

on isotropic and composite shells. Among those 

who have carried out studies on the vibration of 

cylindrical shells include Arnold and Warburton 

[16], Ludwig and Krieg [17], Chung [18], Soedel 

[19], Bhimaraddi [20], Soldatos and Hajigeoriou 

[21], Lam and Loy [22], and Loy, Lam and Shu 

[23]. In addition, several works on FGM 

cylindrical shells have been carried out. 

Najafizadeh and Isvandzibaei [24] studied the 

vibration of thin cylindrical shells with ring 

supports made of an FGM composed of stainless 

steel and nickel based on Third-order Shear 

Deformation Theory (TSDT). The influences of 

ring support position and boundary conditions 

on the frequency characteristics of thin FG 

cylindrical shells using various shear 

deformation theories have been studied by 

Najafizadeh and Isvandzibaei [25]. Tornabene 

[26] studied the dynamic behavior of moderately 

thick FG conical, cylindrical shells and annular 

plates based on the First-order Shear 

Deformation Theory (FSDT). Malekzadeh and 

Heydarpour [27] analyzed the free vibration 

analysis of rotating V cylindrical shells 

subjected to the thermal environment based on 

the FSDT using differential quadrature method. 

With the aid of generalized differential-Integral 

quadrature method (GDIQM), the free vibration 

of a two-dimensional FG circular cylindrical 

shell was analyzed by Ebrahimi and Najafizadeh 

[28]. The dynamic behavior of moderately thick 

FG cylindrical shell surrounded by Winkler–

Pasternak elastic foundation based on the FSDT 
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was investigated by bahadori and najafizadeh 

[29]. Navier-differential quadrature solution 

method was used to obtain natural frequencies 

and mode shapes. 

The literature survey revealed that most of the 

studies have been performed on the vibration 

analysis of clamped FG cylindrical shells with 

the numerical method. However, in this paper, 

an approximate analytical closed-form solution 

is presented for the first time to consider the 

vibration problem formulation for the clamped–

clamped FG cylindrical shell. The FGM 

considered is composed of stainless steel and 

nickel where the volume fractions follow a 

power-law distribution. The objectives are to 

study the frequency characteristics, the influence 

of the constituent volume fractions, and the 

effects of the configurations of the constituent 

materials on the natural frequencies. The 

analysis of the FG cylindrical shell is carried out 

using FSDT and solved using Galerkin method. 

 

2. Problem formulation  
 

Consider a cylindrical shell with radius R, length 

L¸and thickness H, as shown in Fig.1. The 

deformations, defined with reference to a 

coordinate  system (x, θ, z),  taken at  the  middle 

surface, are u, v and w in the x, θ and z directions, 

respectively. 

2.1. The first-order shear deformation theory 
(FSDT) 
 
A cylindrical shell composed of an FGM is 

essentially an inhomogeneous shell consisting of 

a mixture of isotropic materials. It was found that 

the shear deformation effects of an FGM are 

generally more important than those for isotropic 

and laminated materials. Therefore, using FSDT 

for the vibration analysis of an FG shell is a 

suitable theory. In the first-order shear 

deformation shell theory, the Kirchhoff 

hypothesis is relaxed with considering the 

transverse normal not to be remaining 

perpendicular to the mid-surface after 

deformation. Moreover, in developing a 

moderately thick shell theory, the other 

assumptions are made, outlined as: 

• The normal strain is small and negligible, so the 

transverse normal is considered inextensible: 

εz=0. 

• The shell deflections are small and the strains 

are infinitesimal. 

• The shell is moderately thick and therefore it is 

possible to assume that the thickness direction 

normal stress is negligible so that the plane 

assumption can be invoked: σz=0. 

 
 

 
Fig. 1. An FG cylindrical shell. 
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• The linear elastic behavior of an FGM is 

assumed. 

• The rotary inertia is also taken into account. 

 
2. 2. Stress-Strain Relations 
 
For an FG cylindrical shell that includes the 

effect of transverse shear deformation, the stress-

strain relations can be presented in the following 

form:  
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where material constants are defined as [30]: 
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and K is the shear correction factor that is taken 

as K=5/6 in the present implementation of the 

FSDT. A typical effective material properties P 

of the FGM, such as E(z) or υ(z) or density ρ(z) 

or thermal expansion α(z) or thermal 

conductivity k(z) can be expressed in terms of the 

corresponding material properties of its 

individual components as: 

FGM c c m mP = PV + P V  (3) 

 

where Pc and Pm are the material properties of 

the ceramic and metal, respectively. 

If the volume fraction of the ceramic part is 

represented by Vc and the metallic part by Vm, it 

can be followed as: 

1c mV V   (4) 

In this study, the properties of the shell are 

assumed to vary through the thickness of the 

shell with a power-law distribution of the 

volume fraction of the two materials between the 

two surfaces. In fact, the top surface of the shell 

is metal rich whereas the bottom surface is 

ceramic rich. Based on the power-law 

distribution [27], the variation of Vc versus 

thickness coordinate, z, placed at the reference 

surface can be expressed as: 
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where g is the power-law index 

Under the assumptions of a moderately thick 

shell theory reported above, the displacement 

field of the first-order theory is of the form: 
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where  0 0 0, , xu v w       are unknown 

functions to be determined. The kinematics 

hypothesis is expressed by Eq. (3) should be 

supplemented by the statement that the shell 

deflections are small and strains are 

infinitesimal, that is  , ,w x t h  . 

A relationship between strains and 

displacements, in terms of the cylindrical 

coordinates, can be expressed as [31]: 
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Considering the first order shear deformation 

theory and substituting Eq. (6) into Eq. (7), it can 

be deduced: 
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2. 3. Equations of motion 
 

The governing differential equations of motion 

can be derived, using Hamilton’s principle as 

follow: 

 

 
2

1

0

t

sh sh

t

T U W dt       (10) 

 

where shT  and shU   are the variations of the 

kinetic energy and strain energy of the shell, 

respectively. W is the variations of the thermal 

work and t denotes the time.  

The strain energy of the FG cylindrical shell is 

expressed as:  
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The kinetic energy of the rotating cylindrical 

shell is expressed as: 
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For simplicity, by solving the membrane form of 

equilibrium equations, it can be found that 
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 [32]. The work carried out on the shell due to 

thermal load is described as: 
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where NT is defined as: 
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where ( )T z  is the temperature change and Tm 

is the outer surface temperature. 

The temperature variation is assumed to be 

varied in thickness direction only; therefore, it 

can be described in terms of the solution of the 

steady-state heat transfer equation of the FG 

cylindrical shell. The equation of the 

temperature field is given by:  
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This equation is solved with imposing boundary 

condition of T=Tc at z=-h/2 and T=Tm at z=h/2. 
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The solution of this equation, by means of 

polynomial series, is [33]: 
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Substituting Eqs. (11-13) into Eq. (10) and then 

applying Hamilton’s principle to the energy 

functional yields the motion equations as [34]: 
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 (20) 

 

where 
/2

2

/2
{{ ,  ,  } 1,  ,  }

H

ij ij ij ijH
A B D Q z z dz


  . 

 

2. 4. Boundary condition 
 
In the present paper, one of the following 

boundary conditions is considered as follows: 

 

a) Simply supported: 

b)  

0X X xv w N M N       (21) 

The displacement fields which satisfy these 

boundary conditions can be written as:   

( )Cos(n ),

( )Sin(n ),

( )Cos(n )

( ) (n ),

( )Sin(n )

i t

i t

i t

i t
X

i t

m xu Ae Cos
L

m xv Be Sin
L

m xw Ce Sin
L
m xDe Cos Cos

L
m xEe Sin

L























 


 











 (22) 

 

b) Clamped: 

0Xu v w        (23) 
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The displacement field which satisfy these 

boundary conditions can be written as [35]:  

2

2

= ( )Cos(n ) , = ( )Sin(n ) ,

= ( )Cos(n )

= ( )Cos(n ) ,

= ( )Sin(n )

( ) (2 3 1),

( ) ( 1)[ ( 1)]

i t i t

i t

i t
x

i t

u AH x e v B x e
w C x e

DH x e
E x e

x x xH x
L L L
x x x xx
L L L L

 









  

 

 

  



  

  

 (24) 

 

2. 5. Solution method 
 

When Eqs .(22, 24) are substituted into the 

differential Eq. (19), the residuals F1, F2, F3, F4, 

and F5 are derived. According to the Galerkin 

method, the residuals are multiplied by the 

comparison functions, integrate the product over 

the domain of the system, and equate the result 

to zero: 
2

1 0
0 0

0
L

Fu dxRd


    

2

2 0
0 0

0
L

Fv dxRd


    

2

3 0
0 0

0
L
F w dxRd



    (25) 

2

3
0 0

0
L

xF dxRd


     

2

3
0 0

0
L
F dxRd



     

 

Upon integration, Eq. (25) denote a set of linear 

homogeneous algebraic equations in the 

unknown coefficients , , ,  and in 

the following form: 

 

11 12 13 14 15

21 22 23 24 25

31 32 33 34 35

41 42 43 44 45

51 52 53 54 55

0

0

0

0

0

a A a B a C a D a E

a A a B a C a D a E

a A a B a C a D a E

a A a B a C a D a E

a A a B a C a D a E

    

    

    

    

    

 (26) 

 

For suitability in determining, rearranging Eq. 

(26) as stated in ω, the eigenvalue problem is 

achieved on the subsequent matrix form, 

 
2[ ] 0M K d    (27) 

here d A B C D E     . 

 

Eq. (27) can be solved using a traditional 

eigenvalue approach, and six ωi are attained.  

 

3. Results and discussion 
 

Here, the results of natural frequencies of an FG 

cylindrical shell made up of stainless steel and 

nickel are presented. Also, two boundary 

conditions as noted previously are considered 

here for the cylindrical shell. The material 

properties used in the present study are given in 

Table 1. 

Tables 2 and 3 demonstrate a comparison 

between frequencies of FG cylindrical shells 

made up of stainless steel –zirconia using 

ABAQUS model and the present method. As can 

be seen, there is a good conformity between the 

results with a maximum less than 4% deviations. 

In this study, the difference is defined as: 

 

Abaqus GalerkinDifference(%) 100
Abaqus


   

 

 
 

Table 1. Material properties. 
α (1/Co) K (W/mKo) ρ (kg/m3) υ E (Pa) Material 

12.33e-6 15.379 8166 0.317756 207.778e9 Stainless Steel 
9.9209e-6 187.66 8900 0.31 205.098e9 Nickel 
12.33e-6 15.379 8166 0.3262 201.04e9 Steel 

12.766e-6 1.7 5700 0.2882 244.27e9 Zirconium 

23e-6 204 2707 0.3 70 e9 Aluminium 

10e-6 2.09 3000 0.3 151e9 Zirconia 
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Table 2. Comparison of frequencies (HZ) of FG cylindrical shells with simply supported boundary conditions 

steel-zirconia (L/R=20, H/R=0.002, g=0.1). 
Difference (%) Mode No. Galerkin ABAQUS No 

0.79 (1,3) 4.3118 4.3461 1 

-0.07 (1,2) 4.6297 4.6265 2 

1.81 (1,4) 7.3080 7.4467 3 

1.42 (2,4) 8.7 8.8257 4 

0.26 (2,3) 9.1475 9.1710 5 

 
Table 3. Comparison of frequencies (HZ) of FG cylindrical shells with Simply Supported boundary conditions 

steel-zirconia (L/R=3, H/R=0.002, g=0.1). 
Difference (%) Mode No. Galerkin ABAQUS No 

0.8 (1,6) 29.9582 30.199 1 

3.23 (1,7) 30.1875 31.194 2 

3.67 (1,8) 34.6003 35.918 3 

2.03 (1,5) 36.0782 36.825 4 

2.2 (1,9) 43.5913 45.594 5 

1.71 (1,4) 50.2969 51.17 6 

 
Table 4. Comparison of frequencies (HZ) of FG cylindrical shells with Clamped boundary conditions steel-

zirconia (L/R=3, H/R=0.002, g=0.1). 
Difference (%) Mode No. Galerkin ABAQUS No 

-0.56 (1,7) 45.3476 45.094 1 

2.83 (1,8) 43.8775 45.121 2 

7.09 (1,9) 47.0195 50.353 3 

-2.3 (1,6) 52.7234 51.509 4 

11.42 (1,10) 53.4622 59.562 5 

-2.64 (1,11) 67.4569 65.674 6 

Table 4 demonstrates a comparison between 

frequencies of FG cylindrical shells made up of 

Stainless Steel–Zirconia using ABAQUS model 

and present method.  

Figure 0 demonstrates a comparison between 

results of recent article and frequencies of FG 

cylindrical shells made up of aluminium–

zirconia subjected to temperature gradient with 

DQM [36] and exact solution [30]. As can be 

seen, there is a total conformity between these 

results. 

Figure 3 illustrates the effects of the 

circumferential wave number on the frequencies 

of the clamped FG cylindrical shell with 

different thicknesses of the shell, namely, H = 2 

mm and 20 mm. From the figures, it can be 

observed that, at small circumferential wave 

number, i.e., n equals to 1 and 2, the influence of 

thickness is insignificant. At large 

circumferential wave number n, the frequency 

increases with rising the thickness of the shell. 

However, the number of circumferential waves 

with the occurrence of the fundamental 

frequency decreases when the thickness is 

enhanced. For example, the fundamental 

frequency occurs at n=6 for H=0.002, and at 

n=3 for H=0.02 for a shell with L=2 m. 

Figure 4 shows the effect of thermal loads on the 

fundamental frequency of a clamped FG 

cylindrical shell in both different length shells. It 

is seen from these figures that the fundamental 

frequency decreases as the temperature 

difference between the inner and outer surface 

increases. It is also observed that the 

fundamental frequency mode does not shift 

when the Tio is increased. In addition, it is 

noteworthy that, the level of the sensitivity of 

fundamental frequency to Tio increases by 

raising the length of the shell. For example, the 

discrepancies of results are 21.7% and 24.3% for 

shells with L=2m and L=3m, respectively. In this 

comparison, the discrepancy is defined as: 

io io

io

T 100 T 250

T 100

freq. freq.
Dicrepancy (%) 100

freq.
 




   
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Fig. 2. Comparison of frequency for an FG cylindrical shell aluminium-zirconia (g=1, H=0.002, L=2, R=0.5). 

 

 
a b 

Fig. 3. Effect of thickness on natural frequencies of a clamped FG cylindrical shell. a) L=2m, b) L=3m 

(Tio=250(Co)). 

 

 
a  

b 
Fig. 4. Effect of temperature gradient on natural frequencies of a clamped FG cylindrical shell. a) L=2m, b) L=3m 

(H=0.002). 

 

4. Conclusions 
 

There is no exact solution for a cylindrical shell 

with fully clamped boundary condition. 

Therefore, the governing equations are solved 

using Galerkin Method. From the study, some 

conclusions can be made particularly as: 

1. As could be predicted, with increasing Tio 

natural frequencies of all modes are decreased. 
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2. The number of circumferential waves with 

the occurrence of the fundamental frequency 

decreases when the thickness is enhanced. 

3. The fundamental frequency mode does not 

change when the Tio is enhanced. 

4. The level of the sensitivity of fundamental 

frequency to Tio increases by raising the length 

of the shell. 

5. The effect of Tio on natural frequency of an 

FG shell is significant when the circumferential 

wave number is near to the fundamental 

frequency mode. 
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